Loop percolation on discrete half-plane

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Concavity and the Half-Plane Property

Murota et al. have recently developed a theory of discrete convex analysis which concerns M -convex and L-convex functions on jump systems. We introduce here a family of M -concave functions arising naturally from polynomials (over the field of Puiseux series) with prescribed non-vanishing properties. This family contains several of the most studied M -concave functions in the literature. We al...

متن کامل

Percolation on the Projective Plane

Since the projective plane is closed, the natural homological observable of a percolation process is the presence of the essential cycle in H1(RP 2; Z2). In the Voroni model at critical phase, pc = .5, this observable has probability q = .5 independent of the metric on RP 2. This establishes a single instance (RP 2, homological observable) of a very general conjecture about the conformal invari...

متن کامل

Geometry and percolation on half planar triangulations

We analyze the geometry of domain Markov half planar triangulations. In [5] it is shown that there exists a one-parameter family of measures supported on half planar triangulations satisfying translation invariance and domain Markov property. We study the geometry of these maps and show that they exhibit a sharp phase-transition in view of their geometry at α = 2/3. For α < 2/3, the maps form a...

متن کامل

On the Linear Combinations of Slanted Half-Plane Harmonic Mappings

‎In this paper,  the sufficient conditions for the linear combinations of slanted half-plane harmonic mappings to be univalent and convex in the direction of $(-gamma) $ are studied. Our result improves some recent works. Furthermore, a illustrative example and imagine domains of the linear combinations satisfying the desired conditions are enumerated.

متن کامل

THE SCALING LAW FOR THE DISCRETE KINETIC GROWTH PERCOLATION MODEL

The Scaling Law for the Discrete Kinetic Growth Percolation Model The critical exponent of the total number of finite clusters α is calculated directly without using scaling hypothesis both below and above the percolation threshold pc based on a kinetic growth percolation model in two and three dimensions. Simultaneously, we can calculate other critical exponents β and γ, and show that the scal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Communications in Probability

سال: 2016

ISSN: 1083-589X

DOI: 10.1214/16-ecp4571